Numerical Clamping of the Concentrations of Species Using Response Data from Impulse Perturbations: A New Method to Probe Reaction Networks

We are interested in obtaining information about a system by clamping (holding constant) the concentrations of selected species. The method outlined below accomplishes this by utilizing the responses of a system to external (delta function) perturbations of the concentrations in time Using this method we can isolate a segment of a reaction network and study the interactions between its species or clamp a (or several) species and observe its influence on a reactions. We can isolate a few, two or even one species (and observe its exponential decay).

The idea, which may be patentable, is based on time-dependent responses of a system and uses linearization of the kinetics. Consider a species X_p that we want to investigate. We perturb it (e.g. using a jump in conentration) and observe the time-dependent responses in all species that we can measure. (In all that follows, we restrict attention to deviations from stationary state, denoted δX , and assume the linearized kinetic equations hold.). Assume that the perturbation causes responses in many species and that we believe the responses of some of these species originate from a single species X_q (i.e. X_q may be a branch point in a chain of reactions). We would like to test this hypothesis by eliminating the response from X_q and the responses in all species that are caused by X_q from the original time series in which X_p is perturbed. For this purpose, we perturb X_q with a delta function (i.e. concetration jump) and monitor the responses in all species. These responses will be used to reconstruct (numerically) the waveform of δX_q in the original experiment and the responses due to its waveform in other species. These reconstructed waveforms are then subtracted from the original time series, thereby eliminating δX_q (i.e. clamping the concentration of X_q) and its influence on other species.

We perturb the concentration of X_p with a pulse (which steps or jumps the concentration). This perturbation induces responses in other species, not necessarily pulses; we denote the deviations of the concentrations of species from the stationary state as $g_i(k)$. We want to hold concentration X_q constant, i.e. $\delta X_q = 0$, and observe its effect on the original time series. For this purpose we perturb X_q also with a step change in concentration. This causes other nearby species to vary; we record the responses. Using this step perturbation of X_q we reconstruct the time series of X_q when X_p was perturbed. First we normalize the perturbed time series for the perturbation of X_q , which we denote $x^{(q)}$ ($x^{(q)}$ is a vector and $x_i^{(q)}$ denotes the i^{th} species).

$$y^{(q)}(k) = \frac{1}{x_q^{(q)}(1)} x^{(q)}(k),$$

i.e. $y_q^{(q)}(1)=1$. Here and in the following we consider time series that are sampled at times $k\Delta t,\ k=1,2,...,N$. Then we construct the waveform $g_q(k)$

and the responses due to it. The construction is recursive. First, we scale the solution $y^{(q)}(k)$ so that its initial point lies on the curve g_q

$$\overline{y}(k) = g_q(1) y^{(q)}(k)$$

Then at each time step we consider a small delta function perturbation of X_q that pushes the solution onto the required waveform $g_q(k)$. The solution is the sum of these scaled, translated solutions (since the system is assumed to be linear):

$$FOR k = 2: N$$

$$\alpha_q = g_q(k) - \overline{y}_q(k)$$

$$FOR j = k: N$$

$$\overline{y}(j) = \overline{y}(j) + \alpha_q y^{(q)}(j - k + 1)$$

$$END j$$

$$END k$$

This solution is subtracted from the original time series (in which X_p was perturbed). The result is the original time series with held constant.

For the general case in which a few species q are to be held constant, we sum over these species (q in the above expressions).